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26. Renard’s Preferred Numbers  

by Simon A.M. van der Salm 
 
A concise survey of the history, theory and applications of preferred numbers, with 
reference to Aristo and Nestler slide rules 
 
Summary 
 
Most slide rule collectors have in their collection Aristo- or Nestler- slide rules with on the rear side tables with 
R5-, R10-, R20-, E6- and E12-series. Often they possess plastic strips from the Aristo-firm with gauge points 
that denote the so-called preferred numbers.  
 
The French lieutenant Charles Renard discovered preferred numbers in 1877. He found that it is not necessary to 
produce all values of an item’s parameter when a large number of different values is required. A small series of 
standard values, a series of preferred numbers, is sufficient to cover all needed values. Consequently, production 
and logistical costs can be reduced enormously. 
 
The concept of tolerance forms the hart of the preferred number theory. The mathematics of preferred numbers, 
which in fact is calculus of geometric series, covers this concept, as well as the notion of the number of 
significant digits that is applied to write the preferred values. 
 
Because of the logarithmic nature of slide rules, preferred numbers on C- and D-scales can easily be correlated 
with easy-to-find and –remember values on the mantissa-scale L of slide rules. That’s why it is not very difficult 
to calculate with the Renard-numbers on slide rules. 
 
Introduction: Aristo NZ-rules 
In August 2003, members of the International Slide Rule Group (ISRG) deeply discussed preferred numbers, 
numbers of preference that are called Normzahlen (NZ) in German. Other names for these numbers are normal 
numbers, Normungszahlen or Renard-numbers (R-numbers).  
 
The discussion was motivated by scales and certain gauge points on the Aristo-1364, a thin, cheaply constructed 
plastic NZ-rule (in fact a plastic strip) that Aristo delivered with some slide rules. The Aristo-89-Rietz slide rule 
had an NZ-scale on the rear side and was therefore called Aristo 89NZ in the brochures. (See match-number 106 
in Herman van Herwijnen’s Blue Book).  See figures 1 and 3. 

 
See also reference [10]. 
 
Visits on the Internet showed the Aristo 1364 is not the only NZ-rule Aristo produced.  Michael Gährken’s 
website (See [1]) shows a picture of the Aristo 1367, a rule that Aristo produced in combination with the Aristo 
0968 at the beginning of the 1960’s. See figure 2. 
 

Figure 1: The Aristo 1364 
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According the Blue Book the Aristo 0968 was sold in combination with another NZ-rule. 
Concerning match-number 361 the Blue Book mentions an Aristo-NZ-rule with the number 1397. Though one 
number further, under match-number 362 the Blue Book mentions an Aristo 0968 in combination with a NZ-rule 
that bears the product number 1364. 
 
The Aristo NZ-rules have scales, which are denoted by R10, R20 en R40. These scales are called Renard-scales. 
 
Besides rules with NZ-scale divisions according preferred numbers, there exist also Nestler slide rules that bear 
on the rear side tables with R5-, R10-, R20- and/or R40-numbers. In addition, can one find on the rear side of 
slide rules tables with the E6-, E12- en E24-series. See [10]. Sometimes only one series of normal numbers is 
mentioned. My own collection contains a Nestler 21, Darmstadt, of which the rear side shows the series of 
numbers 10; 12.5; 16; 20; 25; 31.5; 40; 50; 63; 80, hence numbers that belong to the R10-series. By the way: 
Nestler uses the name Normungszahlen on this slide rule, in stead of the more usual Normzahlen. See figure 4. 
My collection contains a Nestler Multimath-Duplex, no. 0130, of which the case contains also a plastic strip, 
without any product number, with on one side the series R5, R10, R20 en R40 in 3 significant decimal figures 
and on the other side the series E6, E12 en E24 in 2 significant figures. 
 

 
Charles Renard 
Give an electronics engineer the following series of numbers: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, 100 
and he will tell you immediately that these numbers belong to the E12-series, a series that is used for instance for 
the values of electric resistors with a tolerance of 10%. If you wish he would tell you that there also exists E24-, 
E48- en E96-series and that those series are applied, dependent upon the necessary tolerance of the components 
in use. See [6]. 
 
Give a mechanics engineer one of the following series 100, 160, 250, 400, 630, 100 or 112, 180, 280, 450, 710 
and 1120 and he will explain you those series are applied for the number of revolutions of tooling instruments. 
See [5]. One can find other series also. For instance the smaller types of drilling-machines, of which the velocity 
is adjusted in discrete steps, have the following series of numbers of revolutions per minute: 1000, 1400, 2000, 
2800, 4000, 5600, 8000, 11200.  
 
The examples above mentioned all make use of a Renard-series of numbers, named after the French army 
captain Charles Renard (1847-1905), who professionally worked with big balloons and primitive air ships. The 
French army used balloons to observe enemy lines. Per balloon no less than 400 ropes were needed, but in the 

Figure 2: The Aristo 1367

Figure 3: Rear side of an Aristo 89NZ 
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year 1877 Charles Renard discovered how to reduce this enormous number to a mere 17 standard ropes that 
could be used for all applications. 
 
Renard discovered that it is pointless 
to apply specific values that lie within 
the tolerance area of a standard value. 
It is always possible to round off a 
specific value to above or below to 
reach a certain standard value, 
because of which the number of 
necessary different values of a 
parameter can be reduced 
enormously. The standard values are 
roundings off of so-called Renard-
numbers.  
 
In general by the restriction to 
standard values, a substantial reduction in production and logistical costs is possible. For instance, a certain ISO-
norm for small bolts gives first preference for bolts M4, M6, M10, M16 and M24. The second preference 
consists of the bolts M3, M5, M8, M12, M20 and M30, while only in exceptional cases the application of bolts 
M3.5, M4.5, M14, M18, M22 and M27 is justified. The ISO-norm calls this last mentioned series third 
preference. Notice: for example, bolts M7 don’t belong to this series.  
 
If desired, the series could be extended below or above, by repeating the same pattern. These means 
manufacturers, by preference over the whole world, try to construct their products by using only bolts of the first 
preference. It is clear such a preference for certain standard values makes a simple exchange of products possible 
and an enormous reduction of production costs. That is why the standard numbers 4, 6, 10, 16 en 24, for example 
in use for metal bolts, are called preferred numbers (Normzahlen, Normungszahlen, NZ-numbers). You can also 
observe the classification in three series of preferred numbers in the hardware shops. In the cheapest shop, you 
can only buy bolts of the first preference. Probably the better shop can deliver also bolts of the second 
preference, while only the shop of highest quality can deliver you bolts of the third preference. 
In addition, what about bolts M7? The manufacturer, who wants to apply them really, would have to produce 
them himself or will have to pay a substantial price for them. However, French car manufacturers like Citroën, 
but even German BMW use them, despite these facts. 
 
Renard-numbers 
The numbers of Renard form a geometric series Rn with common ratio n 10=α . Per definition, the number 1 
is a Renard-number. The number n is called power number of the series. 
 
Mostly a Renard-series (strictly speaking this is always a partial series) starts with the number 1 or with the 
number 10, but that is by no means necessary. For instance, in the mechanics engineering, we can find series that 
begin with the number 40. The geometric series is, to the left as well as to the right, infinitely long. However, to 
characterise a Renard-series it is sufficient to mention a sequence of n subsequent numbers. 
  

For example, n equals 5 and hence 5 10=α , then we 
find the geometric series of which table 1 gives 5 
subsequent values. Notice that the numbers in this 
table are written in 4 significant decimal figures. 
 
In table 2, the Renard-numbers for power numbers   
n = 5 up to n = 12, and for power numbers n = 20, n = 
24 and n = 40 are shown.  The Renard-series in table 2 
all begin with the value 10.  
If we round off the values of the R5-series to 1 decimal 
figure after the decimal point and if we multiply every 
number in the series by 10, then we find a well known 
series of preferred numbers:  R5  = 10; 16; 25; 40; 63; 
100. This series of rounded Renard-numbers is used 

Charles Renard: b. 1847, France, d. 1905, France, French 
military engineer, chief builder of the first true dirigible; i.e., an 
airship that could be steered in any direction irrespective of 
wind and could return under its own power to its point of 
departure. In 1884 Renard and Arthur Krebs, French Army 
captains at the Aérostation Militaire, Chalais-Meudon, 
completed the dirigible "La France," which on August 9 of that 
year made its first flight, a circular journey of 7 or 8 kilometres 
(about 4 to 5 miles). Earlier (1871) Renard had flown a pilotless 
heavier-than-air craft, a 10-winged model glider.  
Copyright © 1994-2001 Encyclopædia Britannica, Inc. 
 

Table 1 1,000 
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252 ==α  
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for the focal lengths of lenses and for maximum allowable voltage of capacitors. 

 
Some series of rounded Renard-numbers form Renard-series of standardised preferred numbers. With the 
notation R5 the original, Renard-series of not rounded values is indicated as well as the matching series of 
preferred numbers. Sometimes the rounding off to preferred numbers has been done in a “strange manner” 
because of certain practical considerations. In table, 3 we 
see the mostly applied standardised preferred numbers. 
The series that are denoted with E are used in electronics. 
 
Notice that several numbers of the E12-series are integer 
numbers that are formed by using rounding off the values 
of the R12-series. When we study the E12-series, we 
mention that sometimes the applied rounding differs more 
or less strongly from the usual rounding. For instance, we 
see the value 31.62 in R12, while we find the number 33 
in the E12-series. 
 
The above mentioned shows multiplication by a power of 
10 of every member of a (partial) Renard-series results in 
another part of the same series. Thus, it doesn’t matter 
with which number the series starts. 
 
 
Notice that the power number n equals the number of 
parts in which every decade is divided. 
 
The ISO, the international organisation for standardising, 
gives in her normalisations 4 standardised Renard-series 
of preferred numbers: the series that are numbered R5, 
R10, and R20 in table 3, and the series R40 = 10; 10.6; 
11.2; 11.8; 12.5; 13.2; 14; 15; 16; 17; 18; 19; 20; 21.2; 
22.4; 23.6; 25; 26.5; 28; 30; 31.5; 33.5; 35.5; 37.5; 40; 
42.5; 45; 47.5; 50; 53; 56; 60; 63; 67; 71; 75; 80; 85; 90; 
95; 100. Due to its considerable length, it is not 
mentioned in table 3. 
 
Remarkable enough the standardised preferred numbers 
in table 3 are written with a different number of decimal 
figures! 
 

Table 2a: Renard-numbers from 10 up to 100 for n = 5 upto n = 12 
5 6 7 8 9 10 11 12 

10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 
15.85 14.68 13.89 13.34 12.92 12.59 12.33 12.12 
25.12 21.54 19.31 17.78 16.68 15.85 15.20 14.68 
39.81 31.62 26.83 23.71 21.54 19.95 18.74 17.78 
63.10 46.42 37.28 31.62 27.83 25.12 23.10 21.54 

100.00 68.13 51.79 42.17 35.94 31.62 28.48 26.10 
 100.00 71.97 56.23 46.42 39.81 35.11 31.62 
  100.00 74.99 59.95 50.12 43.29 38.31 
   100.00 77.43 63.10 53.37 46.42 
    100.00 79.43 65.79 56.23 
     100.00 81.11 68.13 
      100.00 82.54 
       100.00 

Table 2b: Renard-numbers for n = 20, 24, 40 
20 24 40  

1st half 
40  

2nd half 
10.00 10.00 10.00  
11.22 11.01 10.59 33.50 
12.59 12.12 11.22 35.48 
14.13 13.34 11.89 37.58 
15.85 14.68 12.59 39.81 
17.78 16.16 13.34 42.17 
19.95 17.78 14.13 44.67 
22.39 19.57 14.96 47.32 
25.12 21.54 15.85 50.12 
28.18 23.71 16.79 53.09 
31.62 26.10 17.78 56.23 
35.48 28.73 18.84 59.57 
39.81 31.62 19.95 63.10 
44.67 34.81 21.13 66.83 
50.12 38.31 22.39 70.79 
56.23 42.17 23.71 74.99 
63.10 46.42 25.12 79.43 
70.79 51.09 26.61 84.14 
79.43 56.23 28.18 89.13 
89.13 61.90 29.85 94.41 

100.00 68.13 31.62 100.00 
 74.99   
 82.54   
 90.85   
 100.00   
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Besides the 4 mentioned R-series there are series that are denoted by E: the E6-, E12-, E24-, E48- and E96-series 
that are used in the electro-technics, in particular electronics. 
 
Table 3 only mentions the E6- and the E12-series. The E24-series, that is not mentioned in table 3, is: 10; 11; 12; 
13; 15; 16; 18; 20; 22; 24; 27; 30; 33; 36; 39; 43; 47; 51; 56; 62; 68; 75; 82; 91; 100. 
 
Besides the primary series of standardised preferred numbers, like the mentioned values in table 3, we 
distinguish also standardised singularly derived R-series, which are derived from the primary series by means of 
extra rounding off: 
R′10 = 10; 12.5; 16; 20; 25; 32; 40; 50; 63; 80; 100. 
R′20 = 10; 11; 12.5; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 71; 80; 90; 100. 
R′40 =10; 10.5; 11; 12; 12.5; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 24; 25; 26; 28; 30; 32;  34; 36; 38; 40; 
42; 45; 48; 50; 53; 56; 60; 63; 67; 71; 75; 80; 85; 90; 95; 100. 
 

 
The standardised doubly derived series of preferred numbers are: 
R″5 =10; 15; 25; 40; 60; 100. 
R″10 = 10; 12; 15; 20; 25; 30; 40; 50; 60; 80; 100. 
R″20 = 10; 11; 12; 14; 16; 18; 20; 22; 25; 28; 30; 35; 40; 45; 50; 50; 55; 60; 70; 80; 90; 100. 
 
Partial series of standardised Renard-series are for instance denoted by R″20 (18.55). In this description the 
begin value and end value belong to the partial series. 
 
Partial series that consist of for example every third item of the R40-series, that starts with the number 10 and 
ends with the value 95, are written as:  
 

R40/3 (10..95) = 10; 11.8; 14; 17; 20; 23.6; 28; 33.5; 40; 47.5; 56; 67; 80; 95. 

Table 3: Mostly used standardised preferred numbers 
 R5 E6 R10 E12 R20 

n = 5 6 10 12 20 
α = 1.585 1.468 1.259 1.212 1.122 

Begin: 10 10 10 10 10 
 16 15 12.5 12 11.2 
 25 22 16 15 12.5 
 40 33 20 18 14 
 63 47 25 22 16 
 100 68 31.5 27 18 
  100 40 33 20 
   50 39 22.4 
   63 47 25 
   80 56 28 
   100 68 31.5 
    82 35.5 
    100 40 
     45 
     50 
     56 
     63 
     71 
     80 
     90 
     100 
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Tolerance circles 
We study a Renard-series of n+1 subsequent numbers that starts with 1 and has common ratio n 10=α : 

 
g0 = α0 = 1; g1 = α1; …..; gk-1 = αk-1 ; gk = αk ; ….. ; gn = αn = 10. 

 
We call the interval of real numbers from 1 to 10 basic decade. Slide rule users would say the basic decade is the 
C- or D-scale on slide rules. In figure 5 these numbers are shown, together with the corresponding tolerance 
circles. In order to make the picture more surveyable; the number axis has been duplicated.  The numbers gk are 
really positioned in the centre of the tolerance circles.  
 
Every decade of the positive number axis is covered by n connecting circles. Notice that only the right half of the 
most left circle and the left half of the most right circle belong to the coverage of the decade. 
 
The part of the number axis that lies within the circle is called the tolerance area or tolerance interval of the 
number in the centre of the corresponding circle. 
 
Due to the geometrical character of the Renard-series, the radius of the kth circle is α times the radius of the  (k-

1)th circle left of it. Therefore, we find that the highest points of the tolerance circles lie exactly on a straight line 
through the origin of the number axis. 
 
We denote the circles in figure 5, from left to right, by C0 up to Cn.  

g0= 1= αααα0 g1 = αααα1    …..    gk-1 = ααααk-1          gk = ααααk         ....…..       gn = ααααn = 10 

Figure 5

0 

Figure 4: Rear side of the Nestler 21, with Normungszahlen from the R10-series 
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The centre point of circle C0 is the number 1; the centre of Cn is the value 10.  
 
We denote an arbitrarily chosen circle by Ck. The radius of this circle Ck we denote by Rk. This radius Rk we call 
tolerance radius of Ck. 
 
The length of the tolerance radius of tolerance circle Ck equals:  Rk = αk. R0 
 
From figure 5 we derive the following equation with a geometric series: 
 

 
 
Hence, we find:  
 
 
 
For several values of the power number n, table 4 gives the length of radius R0, thus the radius of the circle with 
the number 1 as centre point. 

 
Tolerance and fractional uncertainty 
In the previous paragraph, we saw the length of the tolerance radius of tolerance circle Ck equals: 
 

Rk = αk.R0 
 
The meaning of tolerance radius of a parameter of an object, which has the nominal value gk = αk, is that the true 
value can be situated anywhere in the interval:  
 

00 RgR kkk
k

kk ααααα +<=<−  
 
Notice that this definition doesn’t say anything about the probability distribution over the concerned interval. 
Thus, it says nothing about the probability of finding the true value in any specific part of the tolerance area. 
According to this definition, the true value can be situated at the far-left end of the interval as well as at the far 
right side of the interval or anywhere in the central part. 
 
Hence, the absolute uncertainty (absolute error) in the nominal value gk is: 
 

0)()( Rg kk
k αα =∆=∆  

 
In practical situations, we are not too interested in the absolute uncertainty. We just use geometric series in order 
to say something about the relative uncertainty. 
 
The relative or fractional uncertainty (relative error) equals the absolute uncertainty divided by the nominal 
value: 
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Table 4: Radius R0 as a function of power number n 
n = 5 6 10 12 20 24 40 
α = 1.585 1.468 1.259 1.212 1.122 1.101 1.059 
R0 =  0.226 0.190 0.115 0.096 0.058 0.048 0.029 
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Of course, we can express the relative uncertainty in percentages. We then find the percentage uncertainty or 
tolerance: 
 

%100
1
1%100

1
%100)()( 0 ⋅

+
−=⋅=⋅=

α
αδτ Rgg kk  

 
Table 5 shows the same values as table 4, but with addition of the tolerance, as a function of the power number 
n. 
 

 
We see the tolerance is a function of n, but not of k, so not of the precise place of a value on the number axis. For 
every Renard-number with the same power number n, the percentage uncertainty or the tolerance is identical. 
This is exactly the reason of existence for Renard-numbers. 
 
Usually one rounds the tolerance values of the E-series off to easily remembered values.  For the E6-, E12- en 
E24-series one uses the notations: ±20%, ± 10%, ±5% respectively. See the plastic strip with Normzahlen that 
was delivered with the Multimath-Duplex, Nestler 0130. 
 
Nowadays in electronics, one can find applications of the E48- en E96-series. Their tolerances are easily to find. 
A doubling of the power number n approximately halves the tolerance: for the E48- and the E96-series we find 
approximate tolerances of ±2.5% en ±1.25% respectively. In daily practise manufacturers even use the more 
profound rounding off to 2% and 1%. 
 
In the same manner we can round off the tolerances of other R-series from table 5 to easily remembered 
percentages. The tolerances of the R5-, the R10-, the R20- and the R40-series are respectively ± 24%, ±12%, 
±6% and ± 3%. We choose these approximations in order that a doubling of the power number n halves the 
tolerance.  
 
The significant decimal figures of preferred numbers 
In table 3 we can see that for a constant value of the power number n the number of significant decimal figures 
of the preferred numbers vary. Most preferred numbers are described with 2 significant decimal figures, but 
some with 3. The R10-series of preferred numbers has the 3-figure values 12.5 and 31.5, while the other 
numbers are written in 2 significant figures. 
 
This way of writing wrongly suggests that there is, in case of 3 significant decimal figures, a higher accuracy 
than in case of 2 significant figures. The plastic strip of the Nestler 0130 (Multimath-Duplex) gives all the 
preferred numbers of the series R5, R10, R20 and R40 in 3 significant decimal figures, while table 5 shows quite 
a variety of different tolerances (and uncertainties). 
This confronts us with all kinds of questions about the accuracy of the standardised preferred numbers. 
 
The relation between the number of significant figures (or decimal digits) in a value and the corresponding 
uncertainty is a source of many difficulties. Remarkably, enough, this relation between accuracy and the applied 
number of significant digits is not exactly defined. Not in mathematics, not in physics and not in technology. The 
definition depends upon the interpretation of the mathematician, engineer or scientist that is using numbers with 
a certain number of significant decimal figures.  
 

Table 5: Tolerance (percentage uncertainty) as a function of power number n 
n = 5 6 10 12 20 24 40 
α = 1.585 1.468 1.259 1.212 1.122 1.101 1.059 
R0 =  0.226 0.190 0.115 0.096 0.058 0.048 0.029 

=)( kατ  22.6% 19.0% 11.5% 9.6% 5.8% 4.8% 2.9% 
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When the value of a certain parameter equals for instance 6.74, we say that we use 3 significant decimal figures 
or 3 significant decimal digits in that value. When we write 6.740, we use 4 significant figures. In the last case, 
we mostly presume there is a greater accuracy than in the first case. 
 
Leading zeroes in a number are not significant. When we write 0.0635 then we write the number in 3 significant 
decimal figures, although we use more than 3 decimals. 
 
Most easily, we find the number of significant figures when we write the number in scientific notation. 
The number 0.0635 we can write as 6.35 x 10-2.  In relation with calculating on a slide rule, we use mantissas in 
the interval from 1 to 10, but this is not necessary. However, because most calculations on a slide rule are 
performed in connection with the D-scale, our choice of mantissas between 1 and 10 is natural. 
 
The scientific notation shows very well why leading zeroes are not significant but that trailing zeroes are 
significant. 6.74 x 103 is not the same as 6.7400 x 103. Obviously, we presume a greater precision in the last 
number. 
 
As said above there is not one uniform definition of accuracy in connection with the number of significant 
decimal figures. Different users have different interpretations. The mathematician would say that the uncertainty 
is half the place value of the last decimal figure of the mantissa, multiplied by a power of 10. He reads 6.74 x 103 
as (6.74 ± ½ x 10-2) x 103 or as (6.74 ± 0.005) x 103. 
 
The electronics engineer who for example reads electrical voltage from an analogue voltmeter, and who rounds 
the shown value off to the nearest dash must take into account an error of  “half a unity”.  Because of other 
random errors of the measuring instrument, the total uncertainty is usually higher then this half of a unity. 
 
In addition, when a digital voltmeter is used the error of measurement is in general higher than half the place 
value of the last figure in the mantissa, multiplied by a power of 10.  
 
Empirical results of measurements are written as for instance (6.74 ± 0.01) x 103, as (6.74 ± 0.05) x 103  or, in 
exceptional case even as (6.74 ± 0.23) x 103. Obviously, the number of significant decimal figures in the notation 
of a number means nothing more than just the number of figures in the mantissa. 
 
Only in case of very accurate measurements, it is meaningful to give the uncertainty in 2 decimal figures. 
Writing the result of a measurement as 6.74 ± 0.02567 is incredible. In almost all practical situations, the 
uncertainty of a measured value must be written in only 1significant decimal figure.  (Nevertheless, when the 
first digit of the uncertainty is 1 or 2, one could decide to use two significant digits in the uncertainty.) 
 
Instead of 6.74 ± 0.02567 we write 6.75 ± 0.03. The last significant digit in the mantissa of the result of a 
measurement must have the same order of magnitude (= has the same decimal position) as the uncertainty. 
 
Hence, in practical engineering it is not very meaningful to use the rather strict mathematical definition of 
uncertainty in a number that is written in n significant decimal figures.  
 
In case of empirical observations that are written with a mantissa with n significant digits and of which nothing 
is mentioned about the accuracy, one usually says the uncertainty equals 10-n+1. Of course, this is not a proper 
definition but a rule of thumb that nevertheless holds in a relatively extensive category of practical cases. 
Hence, that uncertainty equals the place value of the last decimal figure of the mantissa multiplied by an 
appropriate power of 10. So when the value is denoted as 6.74 (thus when noting is said about the uncertainty in 
the number), we usually understand this number as: 6.74 ± 0.01. 
When we apply this rule of thumb definition for uncertainty in a number that is denoted in n significant decimal 
figures, we can easily see a practical relation between the number of significant digits in a value and the relative 
uncertainty or tolerance. 
See table 6. 
 
From this table, we can conclude that in every day engineering practice mostly we don’t need more significant 
digits than 2 and that more than 3 digits are seldomly required. 
 
By the way: the slide rule is perfectly adapted to this particular interpretation of uncertainty in relation to the 
number of significant figures. When calculating on a slide rule we seldomly can read more than 3 significant 
figures. When we use an electronic calculator, we risk using more significant digits than is meaningful. 
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For instance it is often difficult to accept that writing the surface area of a small plate of wood with a length of 
6,8 [dm] and a height of 7.3 [dm] as 49.64 [dm2] is not very meaningful, while the calculation has been done 
with so much accuracy.  Mention how the do-it-your-self-shop exactly knows how to reduce those 4 digits! 

 
Therefore, by interpreting the meaning of significant figures one has to be very cautious. The preferred number 
12.5 in the R10-series means 12.5 ± 1.4; the preferred number 31.5 in that series can best be understood as 31.5 
± 0.4. Here we see much higher uncertainties than the place value of the last digit of the mantissa multiplied by 
10!  
 
Because of the values in table, 6 preferred numbers should be written in only 2 significant numbers. This 
preference for 2 significant digits forms the background of the need for the derived series of standardised 
preferred numbers. However, sometimes it is necessary to use 3 significant digits in preferred numbers in order 
to get a good spreading of the numbers in a decade, especially for numbers between 1 and 2.  
 
One doesn’t use 3 significant digits to denote a higher accuracy! For example, in electronics the E48-series is 
often used for resistors with a tolerance of 2%. (In fact, the E48-series has 2.4% as tolerance). Following table 6 
we should use 2 significant decimal figures, but that would mean we couldn’t make any difference between the 
numbers 1.27 and 1.33, when both would be rounded off to 1.3. 
 
Preferred numbers and slide rules 
Again, we study a Renard-series of n + 1 subsequent numbers, with 1 as starting number and common ratio  

n 10=α : 
 

g0 = α0 = 1; g1 = α1; …..; gk-1 = αk-1 ; gk = αk ; ….. ; gn = αn = 10. 
 
 
Because Renard-numbers are defined by means of a power root of 10, there exists a simple relation between 
Renard-numbers and their logarithms. Table 7 gives the logarithms in decimals and in fractions of the preferred 
numbers of the R5-, R10-, R20- and R40-series. The logarithms are chosen in the interval from 1 to 10, so in fact 
the logarithms in this table are identical with the mantissas. 
 

Table 6: Practical relation between the number of significant decimal digits in a value and  
percentage uncertainty or tolerance 

 Percentage uncertainty or tolerance 
Number of significant digits Between Roughly 

1 10% en 100% 50% 
2 1% en 10% 5% 
3 0.1% en 1% 0.5% 
4 001% en 0.1% 0.05% 
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In this paragraph, it is useful to enhance the notation of Renard-numbers. In stead of gk, in the decade from 1 to 
10, we shall write gn;k, in order to show that Renard-numbers are a function of n as well as of k. 
 
We can read gn;k as the kth Renard-number in the decade from 1 to 10, that belongs to the Rn-series. Also the 
rounding off of the Renard-number to a standardised preferred number we denote by gn;k. 
 
We find as logarithm of gn’k : 
 

Table 7: Preferred numbers and their logarithms 
log(gn;k)  k/40 R40  k/20 R20 k/10 R10 k/5 R5 

0.000  0/40 1.00  0/20 1.00 0/10 1.00 0/5 1.00 
0.025  1/40 1.06        
0.050  2/40 1.12  1/20 1.12     
0.075  3/40 1.18        
0.100  4/40 1.25  2/20 1.25 1/10 1.25   
0.125  5/40 1.32        
0.150  6/40 1.40  3/20 1.40     
0.175  7/40 1.50        
0.200  8/40 1.60  4/20 1.60 2/10 1.60 1/5 1.60 
0.225  9/40 1.70        
0.250  10/40 1.80  5/20 1.80     
0.275  11/40 1.90        
0.300  12/40 2.00  6/20 2.00 3/10 2.00   
0.325  13/40 2.12        
0.350  14/40 2.24  7/20 2.24     
0.375  15/40 2.36        
0.400  16/40 2.50  8/20 2.50 4/10 2.50 2/5 2.50 
0.425  17/40 2.65        
0.450  18/40 2.80  9/20 2.80     
0.475  19/40 3.00        
0.500  20/40 3.15  10/20 3.15 5/10 3.15   
0.525  21/40 3.35        
0.550  22/40 3.55  11/20 3.55     
0.575  23/40 3.75        
0.600  24/40 4.00  12/20 4.00 6/10 4.00 3/5 4.00 
0.625  25/40 4.25        
0.650  26/40 4.50  13/20 4.50     
0.675  27/40 4.75        
0.700  28/40 5.00  14/20 5.00 7/10 5.00   
0.725  29/40 5.30        
0.750  30/40 5.60  15/20 5.60     
0.775  31/40 6.00        
0.800  32/40 6.30  16/20 6.30 8/10 6.30 4/5 6.30 
0.825  33/40 6.70        
0.850  34/40 7.10  17/20 7.10     
0.875  35/40 7.50        
0.900  36/40 8.00  18/20 8.00 9/10 8.00   
0.925  37/40 8.50        
0.950  38/40 9.00  19/20 9.00     
0.975  39/40 9.50        
1.000  40/40 10.00  20/20 10.00 10/10 10.00 5/5 10.00 
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n
kkkg nk

kn =⋅=⋅== )10log()log()log()log( ; αα  

 
In this formula and next formulae the log’s base is 10, so in Dutch and American notation: 
 

)(log)log()log( 10
10 xxx ==  

 
De numbers (the mantissas) k/n are situated on the L-scale of a slide rule and can be found easily because of the 
linearly divided marks on this scale.  
 
The corresponding Renard-number: 

n
k

kng 10; =  
 
(and when we take the sometimes unusual rounding off not too problematically, even the corresponding 
standardised preferred number) we read on the D-scale.  
 
Suppose we like to know the 3rd number of the R40-series, than we look for 3/40 on the L-scale (which is quite 
easy) and read on the D-scale the corresponding preferred number 1.18. Notice the number 1 we call the 0th 
number of the Renard-series! 
 
In the same manner, we find the 14th number of series R20 by looking for 14/20 on the L-scale and reading the 
corresponding preferred number on the D-scale. We find 0.50. Because 14/20 equals 7/10, we immediately see 
that the number 0.50 is also a number of the R10-series. (Moreover, we conclude from the notation 7/10 for the 
mantissa, it is the 7th value in series R10.) 
 
The logarithm of the 32nd number in the R40-series equals 32/40, that can be written as 16/20, and as 8/10 and as 
4/5. We conclude the preferred number 6.30 belongs to the R5-, R10-, R20- and R40-series. 
 
Multiplication and division of preferred numbers 
Because of the nature of Renard-numbers, the product and the quotient of two of those type numbers give a 
Renard-number as a result: 

 

n
lkgggg lnknlnkn

+=+=⋅ )log()log()log( ;;;;  

 
If the sum k + l is more than n, it is not possible to read the corresponding Renard-number from the D-scale of a 
slide rule. The D-scale is just not long enough. However, after n Renard-numbers the series repeats itself, but 
with numbers that are 10 times the numbers in the basic series. If we read the sum in above formula as a sum 
modulo n, we can easily read the matching Renard-number just by multiplying the found number by 10. 
 
So on the D-scale we read the Renard-number from the basic series (from 1 to 10): 
 

n
nlkgggg lnknlnkn

mod)()log()log()log( ;;;;
+=+=⋅  

 
and find the product by multiplying this value by 10. The same counts for the preferred numbers that are rounded 
off Renard-numbers. 
 
Take for instance n = 20, k = 13 and l = 16. The corresponding preferred numbers are g13 = 4.50 and g16 = 6.30 
respectively. Notice the matching mantissas are 13/20 and 16/20 respectively. 
 
When we multiply the two preferred numbers, we find 28.35, which number has too many significant digits. 
Because the two numbers in the product have only 2 significant digits, the product of them cannot have more 
than 2 significant figures also. Therefore, we round the product off to 28. 
 
We also have the simple equation: 
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(13 + 16) mod 20 = 9 

 
from which we conclude we have to look for the 9th preferred number of the R20-series.  
This numbers equals 2.8. In addition, by multiplying this value (that always lies in the interval from 1 to 10) by 
10 we conclude the product must be 28. 
 
We can notice the modulo-calculation of the sum of the position numbers k and l leads to the same slide rule 
movements, as we have to perform with multiplications on the C- and D-scale.  
 
Because in divisions the mantissas of preferred numbers are subtracted, we find: 
 

n
nlkgg

g
g

lnkn
ln

kn mod)()log()log()log( ;;
;

; −=−=  

 
Because the L-scale doesn’t provide negative numbers, the value of the quotient  
 

n
nlk mod)( −

 

 
has to be determined in such a way that the result is a non-negative integer number.  
 
Thus, for all integers x we take:  

nnx <≤ mod0  
 
If, for instance, we divide the 9th by the 17th of the R40-series, then k – l equals –8. The point –8/40 isn’t a value 
on the L-scale. However the point –8/40 corresponds with –8/40 + 40/40 = 32/40.  
Hence  
 

(9 – 17) mod 40 =32. 
 

The quotient of the 9th and the 17th number in de R40-series equals the 32nd number, of course divided by 10. 
 
 
We conclude: what is above said about products of Renard-numbers applies mutatis mutandis to quotients. 
 
Applications of NZ-rules 
In this article we discussed some well known applications of which most come from the field of electronics. 
However, many other examples could be given. The interested reader should read the excellent articles about 
preferred numbers by Dr. Klaus Kühn and Eugen Paulin in Brief no.7 of the German RechenSchieber Treffen. 
See references [10] and [11]. 
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