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Correlation Machines                                                               Andries de Man 

 

Dit artikel is eerder gepubliceerd in de proceedings van de International 

Meeting in Trento, september 2016. 

 

Correlation 

   Correlation is a statistical concept that is used in many scientific areas. Two 

or more quantities are correlated if there is a “connection” between the pair-

wise values they can assume. Correlation is usually quantified with the “Pear-

son coefficient of correlation” 𝑟, spanning −1 to 1.  

   In this presentation we will use two quantities: X and Y. Figure 1 shows a 

number of datasets with these quantities, and the corresponding Pearson coefficient of correlation 𝑟  

    

The interpretation of correlation coefficients is tricky. A high (absolute) coefficient of correlation does 

not necessarily indicate a linear relation between X and Y. The four datasets in the lower row of Figure 1 

all have the same 𝑟, but look quite different. Data with a low (absolute) coefficient of correlation can 

still show a clear pattern. The datasets in the third row of Figure 1 have a zero coefficient of correlation, 

but still seem to have some connection between X and Y. 

   The Pearson coefficient of correlation was introduced in 1895 by Karl Pearson and started to be used 

at a large scale in the beginning of the 20th century by, amongst others, economists, psychologists, agri-

cultural experts and brewers. 
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How is r calculated? 

   If there are 𝑛  “subjects” in the dataset, and the  subject i has a value 𝑥𝑖 for X and 𝑦𝑖  for Y, than 𝑟 is 

given by: 

𝑟 =
𝑛 ∑ 𝑥𝑖  𝑦𝑖 −  ∑ 𝑥𝑖 ∑ 𝑦𝑖

√𝑛 ∑ 𝑥𝑖
2 − ( ∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖

2 − ( ∑ 𝑦𝑖)2

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Pearson  r value for various datasets  (Source: Wikipedia) 

 
Figure 2: Correlation form, for a method using (xi + yi )  [Cureton1929] 
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   So one needs the following sums: ∑ 𝑥𝑖 ,  ∑ 𝑦𝑖 ,  ∑ 𝑥𝑖
2 ,  ∑ 𝑦𝑖

2  and ∑ 𝑥𝑖𝑦𝑖 . The first four sums are also 

needed for the calculation of averages and standard deviations. If there are more quantities (X,Y,Z,...) 

one will need all primary sums, square sums and (at least) pairwise cross sums. And one would like to 

do all these calculations by entering the data only once. 

   By 1900 Hollerith tabulators and punch cards could be used for this purpose, but this equipment was 

large and expensive. Another method consisted of employing human “computers” who, without any 

knowledge of statistics, performed calculations using pre-printed forms. A large variety of these forms 

were offered commercially, with small variations of the formula for 𝑟 and built-in error checking (Fig-

ure 2). 

   The first step in the calculation of a correlation coefficient usually consisted in “transmutation” of the 

data: the range of the values was normalized to (generally) integer numbers between 1 and 20. After this 

step one could use a printed multiplication table, and mental addition to calculate the correlation. This 

calculation could also be performed with a “normal” mechanical calculating machine, preferably one 

with a very wide result register. The appendix describes how these calculations were done.  

   It is clear that this was a time-

consuming error-prone job. 

That’s why a need arose for ded-

icated, inexpensive correlation 

calculators. 

Dedicated machines 

 

Hull 

   By 1921 Clark Hull, a psy-

chologist from Wisconsin, con-

structed a purely mechanical 

machine (Figure 3) for calculat-

ing the sums mentioned above 

[Hull1925]. The data, having in-

teger values between 0 and 999, 

was punched into paper tape that 

had to be fed multiple times 

through the machine. Hull could the calculate correlations between a large number of quantities. The 

resulting averages, standard deviations and correlation values could be registered in thin metal strips for 

use in correlation-based predictions. The machine was used to give occupational advice for 40 profes-

sions based on 60 psychological parameters [Mechanix 1929]. 

 

   Two versions of this machine were built, one for the Wisconsin Psychological Laboratory and one for 

the National Research Council.  Because some researches started sending Hull data for processing, he 

proposed to establish a Central Correlation Bureau that would compute correlations on demand.  

   At the time, it was thought that two machines would be enough for all the correlation-needs in the 

United States. 

 

Dodd 

   Around 1925 Stuart C. Dodd, a psychologist at Princeton University, made a simpler correlation cal-

culator [Dodd1926].    This machine (Figure 4) contained drums on which square numbers where rep-

resented by pins of different lengths (separate pins for units and tens). These drums are the square num-

ber equivalent of the multiplication bodies as used in the Millionaire calculator. Dodd designed different 

 
Figure 3: Hull's machine 
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versions of this device. Later development was continued by the Cambridge Instrument Co. Inc., New 

York, who sold these correlation machines to the universities of Harvard, Berkeley, and Chicago. 

 

Seashore 

   A third correlation machine (Figure 5) carries 

the name of Carl Emil Seashore (Sjöstrand), 

again a psychologist. This machine was sold 

around 1930 by the C.H. Stoelting Co. from 

Chicago, for $550. The machine calcu-

lated ∑ 𝑥𝑖 ,  ∑ 𝑦𝑖 ,  ∑ 𝑥𝑖
2 ,  ∑ 𝑦𝑖

2  and  

∑(𝑥𝑖 − 𝑦𝑖)2 , using a slightly different formula 

for 𝑟. 

 

Analog methods 

   If X and Y are regarded as coordinates of 

point masses in a two-dimensional space, then 
1

𝑛
∑ 𝑥𝑖 and 

1

𝑛
∑ 𝑦𝑖  give the centre of mass, and 

∑ 𝑥𝑖
2 and ∑ 𝑦𝑖

2 give the moments of inertia with 

respect to the X and Y axes. 

 

Price  

   In 1935 the psychologist Bronson Price [Price1935] proposed to use these properties for the calcula-

tion of: construct a bed of nails on which the data is attached using thin rings, and determine the centre 

of mass and the moments of inertia of 

the whole shebang. The practical prob-

lem was that the bed and the nails had to 

be very light, or the rings had to be very 

heavy. Price never tried it himself. 

  

Harsh and Stevens  

   C.M. Harsh and Stanley Smith Ste-

vens, psychologists at Harvard, created 

an analog correlation machine working 

with small balls (Figure 6). 

 

Platt 

   Later John R. Platt revived the idea [Platt1943]. Platt was a biophysicist from Michigan who ended 

up in sociology. He used a flat metal sieve in which the data was set with lead pins (Figure 7).  

   The centre of mass was determined by hanging the thing twice, from different vertices, getting the two 

plumb lines from these vertices, and then obtaining their intersection. For the determination of the mo-

ments of inertia the thing was regarded as a torsion pendulum: the whole thing was given a rotation 

around a vertically placed X-, Y- or diagonal-axis and then released, and the time needed for at least 20 

to-and-fro rotations was measured. Platt claimed that, this way, he could determine 𝑟 with an accuracy 

of 0.01. 

 

 

 

 
Figure 4: Prototype of Stuart Dodd's machine 

 
Figure 5: Seashore's machine (Stoelting catalog, 1930) 



MIR 72 december 2016 

27 

 
 

The hydraulic device of Schumann  

   A somewhat more complicate, and more dangerous, device was made by the South-African meteorol-

ogist Theodor Eberhardt Werner Schumann [Schumann1940]. This device contained glass tubes filled 

with mercury in which iron rods were floating. His machine was also used to solve sets of linear equa-

tions. A trained human computer would need 5m² + m³/4 minutes to solve a set of m equations with m 

variables, while Schumann’s machine 

could do that in 6m minutes. 

 

The electrical device of Ford 

   Adelbert Ford, a psychologist of Michi-

gan University, built an electrical correla-

tion machine in 1931 [Ford1931]. The data 

was entered on a panel with 100 potenti-

ometers (Figure 8). The position of a po-

tentiometer corresponds with the (trans-

muted) X and Y value of a data point. For 

each data point the corresponding potenti-

ometer is turned 1 unit. The actual rotation 

angle for one unit changes with the posi-

tion of the potentiometer, and this way 

squares and 

cross prod-

ucts are 

“calcu-

lated”. 

Each potentiometer is connected to its own coil, and all these coils to-

gether form the secondary side of a transformer. To the primary side a 

voltmeter is attached which is used to read ∑ 𝑥𝑖𝑦𝑖 . Since the transmuted 

data is required to average to zero, for the calculation of 𝑟 Ford only 

needs ∑ 𝑥𝑖𝑦𝑖   and  √∑ 𝑥𝑖
2  ∑ 𝑦𝑖

2 , with the latter being set with a compli-

cated calibration procedure. 

 

Post processing 

   The mechanical correlation machines only calculated sums. To calcu-

late 𝑟, square roots and quotients had to be computed using a slide rule 

or log table (or a mechanical calculating machine, if you time to spare). 

Fortunately, the required accuracy for  𝑟 was usually only one decimal 

(in a −1 to 1 range). 

 

Epilogue 

   The correlation machines present a unique contribution of psychologists, sociologists and the like to 

the development of computing devices. This was clearly brought about by practical needs and a con-

temporary inclination towards technology among psychologists [Draaisma1992]. 

   I have been unable to find correlation machines of European origin. On the contrary: in 1929 the 

German mathematician Wilhelm Cauer attempted to buy a Hull machine for Göttingen University 

[Petzold2000]. 

 
Figure 4: Harsh and Stevens’ analog “instrument” 

[Harsh1938] 

 
Figure 5: Platt’s analog “instru-

ment” [Platt1943] 
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   Of the mentioned machines no surviving specimens are known to me, except for the Hull machine that 

was rediscovered in 1997 by Hartmut Petzold in a depot of the National Museum of American History 

[Petzold2000]. Psychological institutes seem to be as careless regarding their material heritage as are 

institutes of science and technology. 
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Illustrations 

 Fig 1: Pearson 𝑟 value for various datasets (Source: Wikipedia) 

 Fig 2: Correlation form, for a method using (𝑥𝑖 + 𝑦𝑖)  [Cureton1929] 

 Fig 3: Hull's machine 

 Fig 4: Prototype of Stuart Dodd's machine 

 Fig 5: Seashore's machine (Stoelting catalog, 1930) 

 Fig 6: Harsh and Stevens’ analog “instrument” [Harsh1938] 

 Fig 7: Platt’s analog “instrument” [Platt1943] 

 Fig. 8: Ford’s Correlator: a quarter section of the panel with potentiometers for entering data 

 

 
Figure 6: Ford’s Correlator: a quarter section 

of the panel with potentiometers for entering 

data 
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Appendix 

The calculation of the sums for r using a mechanical calculator: 

Suppose we have a simple pinwheel calculator with 12 digits in the input- and revolution register, and 

20 in the result register: 

Revolution         0 0 0 0 0 0 0 0 0 0 0 0 

Input         0 0 0 0 0 0 0 0 0 0 0 0 

Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Take 𝑥𝑖 = 12 and 𝑦𝑖 = 13. 

Put 𝑥𝑖 and 𝑦𝑖 in the input register (separated by zeroes!) 

Revolution         0 0 0 0 0 0 0 0 0 0 0 0 

Input         0 0 0 0 1 2 0 0 0 0 1 3 

Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Shift the input register over half its width: 

Revolution         0 0 0 0 0 0 0 0 0 0 0 0 

Input   0 0 0 0 1 2 0 0 0 0 1 3       

Result 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Turn the crank 2 times (units of 𝑥𝑖) 

Revolution         0 0 0 0 0 2 0 0 0 0 0 0 

Input   0 0 0 0 1 2 0 0 0 0 1 3       

Result 0 0 0 0 0 0 2 4 0 0 0 0 2 6 0 0 0 0 0 0 

 

Shift the input register over 1 position and turn the crank 1 time (tens of 𝑥𝑖) 

Revolution          0 0 0 0 1 2 0 0 0 0 0 0 

Input  0 0 0 0 1 2 0 0 0 0 1 3        

Result 0 0 0 0 0 1 4 4 0 0 0 1 5 6 0 0 0 0 0 0 

 

We now have 𝑥𝑖 in the revolution register, and 𝑥𝑖
2 and 𝑥𝑖𝑦𝑖 in the result register. 

Shift the input register back completely. 

Revolution         0 0 0 0 1 2 0 0 0 0 0 0 

Input         0 0 0 0 1 2 0 0 0 0 1 3 

Result 0 0 0 0 0 1 4 4 0 0 0 1 5 6 0 0 0 0 0 0 

 

Turn the crank 3 times (units of 𝑦𝑖) 

Revolution         0 0 0 0 1 2 0 0 0 0 0 3 

Input         0 0 0 0 1 2 0 0 0 0 1 3 

Result 0 0 0 0 0 1 4 4 0 0 0 1 9 2 0 0 0 0 3 9 

 

Shift the input register and turn the 1 time (tens of 𝑦𝑖) 

Revolution         0 0 0 0 1 2 0 0 0 0 1 3 

Input        0 0 0 0 1 2 0 0 0 0 1 3  

Result 0 0 0 0 0 1 4 4 0 0 0 3 1 2 0 0 0 1 6 9 
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   We now have 𝑥𝑖 and 𝑦𝑖 in the revolution register, and 𝑥𝑖
2  and 2𝑥𝑖𝑦𝑖 and 𝑦𝑖

2 in the result register. 

Shift the input register back completely, and repeat the procedure for 𝑥𝑖+1and 𝑦𝑖+1 without clearing the 

revolution- and result registers.  Finally the revolution register will contain  ∑ 𝑥𝑖 and  ∑ 𝑦𝑖 , and the 

result register ∑ 𝑥𝑖
2 and 2 ∑ 𝑥𝑖𝑦𝑖  and  ∑ 𝑦𝑖

2  

   We see that each value of 𝑥𝑖 and  𝑦𝑖 has to be entered twice: once in the input register and once when 

cranking. But, because the revolution register is not cleared, it is difficult, after the first pair of values, 

to check if the correct value has been “cranked in”. Electrically driven machines that allow entering 

multiplicators via a separate keyboard or pin setting would be a great help in this case.  

   It is also clear that, depending on the number of data-points and the range of the data, the registers 

should be rather large: for 100 data points with a range of 0…100 (integer numbers!) ∑ 𝑥𝑖
2 can grow 

to 106, needing 7 digits.  

The result register will have to accommodate 3 sums of this size, so should have at least 21 digits.  

 

 

                                                                                

    

 

 

                                                           

 

 

   

 

 

  

 




